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Abstract
In this paper we report the spin correlation and its effects on the many-body
properties of a quantum wire whose width is given practical consideration. The
single-pole approximation, which is of much relevance in studying the many-
body properties of an interacting one-dimensional electron gas (1DEG) because
of the severe constraints imposed on the phase space of plasma–hole excitations,
has been used to obtain analytical results. The local-field corrections are
incorporated within the Hubbard approximation (HA). We find the results
obtained for low electron densities under the single-pole approximation on the
paramagnon dispersion relation, magnetic structure factor and the symmetric
and anti-symmetric pair correlation function to be in good quantitative
agreement with those obtained under heavily computational self-consistent field
calculations. Unlike prior reported work on the magnetic structure factor and
pair correlation function, our calculation is applicable to quantum wires of width
less than 10 nm, where interesting quantum size effects are observed.

1. Introduction

The spin of the electron in low-dimensional systems has been the subject of investigation
in an increasing number of experimental and theoretical studies over the past few years.
Magnetic phenomena apart, it has been reported that spin can also play a nontrivial role even
in nonmagnetic phenomena [1]. Conductance measurements on ultra-low-disorder quantum
wires support a spin polarization at zero magnetic field. Spin–spin interactions are suggested
to be responsible for the so-called experimentally established 0.7 structures [2]. It has recently
been shown by thermodynamic measurements that the Pauli spin susceptibility of a strongly
correlated two-dimensional electron liquid in silicon grows critically at low electron densities,
which is suggestive of the existence of a phase transition [3]. A separate subject of spintronics,
which is a neologism for spin-based electronics (also known as magnetoelectronics) which
exploits the use of the quantum propensity of electrons to spin as well as making use of their
charge state, has already made significant technological progress in recent times [4]. The
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ability to control electron spins in molecules leads to molecular spintronics, which is seen
as an alternative to silicon in complementary metal oxide semiconductors [5]. It is envisioned
that a complete understanding of the spin polarization will have immediate applications to one-
dimensional (1D) transport in mesoscopic devices and will also have implications in the area
of spintronics.

In 1D and quasi-1D, system interactions become increasingly noticeable at low densities.
The enhanced interactions (in principle—because of the occurrence of Peierls divergence in the
particle–hole bubble and charge spin separation) invalidate the celebrated Fermi liquid model
which describes the low-energy dynamics of interacting normal solid-state bulk systems. As a
consequence of the electron–electron interactions, a correlated 1D system is expected to exhibit
Tomonaga–Luttinger (TL) behaviour [6]. However, the ordinary Fermi liquid theory has been
reported to be valid in the presence of disorder, which always exists, in a real 1D electron gas
system, also termed a quantum wire (QW) at finite temperature [7]. Also, the TL model still
does not account for many of the peculiarities of the 1D system. For example, the TL model
is unequipped to explain the occurrence of the much discussed 0.7 structure, i.e. 0.7(2e2/h)

conductance plateaus, at zero temperature [8].
The paramagnetic ground state of the electron gas at high densities spontaneously switches

to a spin-polarized ferromagnetic state at low densities due to the enhanced interactions which
induce correlation between the electrons. Spin fluctuations can be treated by introducing
the local field correction (LFC) for the spin susceptibility, which results in a Stoner-like
enhancement factor [9]. The short-range spin exchange and correlation effects in a QW have
been studied under various schemes such as Singwi–Tosi–Land–Sjölander (STLS) and Singwi–
Sjölander–Tosi–Land (SSTL) via an LFC in the spin density response function [10–13].
An expression for the frequency- and wavevector-dependent paramagnetic susceptibility of
a three-dimensional electron gas at metallic densities was derived within the random phase
approximation (RPA) by Lobo, Singwi and Tosi (LST) [14]. The LST approach uses the
concept of the LFC for the spin susceptibility for the electron gas with long-range Coulomb
interaction. The LFC takes into account the deviations from the RPA due to the effects of
exchange and correlation. The influence of exchange correlation in a quantum wire has been
re-emphasized courtesy of a recent experiment on the measurement of 1D plasmons in an
atom wire array on the Si(557)-Au surface by inelastic scattering of a highly collimated slow
electron beam. Though the experiment has been conducted on a high-density free-electron
gas, a substantial influence of electron correlation due to strong 1D confinement has still been
detected [15]. Apart from the self-consistent calculations, there have been studies of the 1DEG
using diffusion Monte Carlo simulations to estimate the ground-state properties by taking into
consideration the effects of exchange and correlation [16].

Recently, the spin correlation effects in a QW have been investigated in the STLS and com-
pared with the SSTL approach [13]. A few of the physical quantities have also been calculated
considering the LFC within the HA for spin correlations, and the results are found overall to
be in good agreement with those of SSTL and STLS but particularly in closer agreement with
that obtained in the STLS method. The various competing schemes like the Hubbard approx-
imation, STLS and SSTL, as mentioned above, estimate the exchange and correlation effects.
These have been formulated to improve upon the limitations of the other, but in turn their own
loopholes and shortcomings creep in. For example the STLS, although a big improvement over
the RPA for considering short-range correlation, gives a correct pair correlation function but
fails to satisfy the compressibility sum rule, whereas the SSTL approach, which satisfies the
compressibility rule better than the STLS method, yields a negative value of the pair correla-
tion function [13]. It has been observed that the replacement of one with other brings in only a
marginal change in the calculated physical properties of the QW [12, 13].
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One of the two concerning aspects of the prior reported studies on the ground-state
properties of the QW is the consideration of width of the generic semiconductor QW. The
characteristic quantum features of a QW, such as a significant change in the fundamental band
gap and a reduction in the dielectric constant determining the binding and exchange energies,
emerges when the QW is restricted to at most the single-nanometre (nm) digit range [17, 18].
The bulk properties of semiconductor QWs are not affected down to the smallest commercial
submicron devices [19, 20]. Also, for the room-temperature operation of a quantum device
the various calculated length-scales fall into this single-nanometre limit [21]. Secondly, a
great deal of interest in the 1D structures has been due to the fact that these structures have
offered a realistic platform for testing various theoretical predictions like TL behaviour, Peierls
distortion, Anderson localization etc. But the tests have traditionally utilized 3D crystals
containing chain structures, such as chains of transition-metal ions spaced by counter-ions
or conjugated polymer chains. However, in the recent past there have been attempts to go
beyond these limited classes of compounds and tailor 1D chain structures at surfaces in order
to customize their electronic structure, such as controlling the chain–chain interaction, altering
the band filling and secluding a Peierls distortion [21]. However theoretical investigations on
correlation effects in a QW have been performed on 1D systems having widths of more than
10 nm. Therefore there appears to be a need to perform calculations on the spin correlation
effects in a QW for a width spanning less than 10 nm.

The single-pole approximation (SPA) is of the utmost significance in studying the
properties of quantum wire systems because of the severe restrictions in the phase space of
the particle–hole excitations, as has been argued convincingly in the recent past [22]. The
SPA is referred to as a plasma pole approximation (PPA) in the calculation of ground-state
properties involving the density response function. The calculated electron self-energy due to
Coulomb interaction and the hot electron energy relaxation rate due to longitudinal optic (LO)
phonon emission in GaAs quantum wires using PPA are almost found to be identical with more
complete many-body calculations [22]. The PPA is a very good approximation to the RPA in
QW systems, as the plasmon excitations dominate the single-particle excitations. The TL liquid
model also proposes that the true coherent excitations of the ideal 1D system are the collective
charge density excitations which are of bosonic character, and the single-particle excitations are
nonexistent. Also, the dispersion of the TL bosons to third order in q is exactly similar as for
the plasmons calculated within the RPA. The plasmon modes in a QW exist for all wavevectors
which are unlike higher dimensions [7]. Earlier, the PPA was used extensively in the calculation
of electron self-energies of three- and two-dimensional systems, and the results obtained have
been found to be in good semi-quantitative agreement with those of more complete RPA and
experimental data [22].

In light of these arguments and as a sequel to our reported study on the spin-independent
many-body aspects of a QW [23], in this paper we report the calculated spin-correlated ground-
state properties of a QW, where the LFC are incorporated within the HA and the width of the
QW is given practical consideration. The calculations are made within the SPA as well as
beyond the SPA. The paper has been organized as follows: section 2 describes the model and
theory used in this work; section 3 contains the results and discussion; and finally section 4
concludes the work.

2. Model and theory

Our study is modelled on a GaAs-QW which is parameterized in terms of the effective mass
m∗ = 0.068me and the background dielectric constant εb = 12.5. The construction of the QW
is defined by δ-function-type confinement along the z-axis and an infinite-potential-well-type
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confinement along the y-axis, with the electrons free to move along the x-axis. The electron
wavefunction is assumed to vanish at boundaries of the wire across the y-axis, at y = ±a/2,
where a is the width of a QW. The band for motion along the x-axis is assumed to be parabolic;
ξk = h̄2k2

2m∗ − μ, where m∗ is the effective electron band mass and μ is the chemical potential.
This is a reasonable assumption for a QW where the electron density is low (∼106 cm−1),
occupying only the lowest (ground) subband.

The static structure factor and static magnetic structure factor, respectively, can be
expressed as [13, 24]

S(q) = −1

nπ

∫ ∞

0
dω Im(χd(q, ω)) (1)

Ŝ(q) = 1

nπg2μ2
B

∫ ∞

0
dω Im(χ s(q, ω)), (2)

where n is the 1D density related to the Fermi wavevector, kF, by the relation n = 2kF/π . The
zero-temperature dynamic density–density response, χd(q, ω), and the spin-density response
function, χ s(q, ω), respectively, are defined as [13]

χd(q, ω) = χ0(q, ω)

1 − V eff
s (q)χ0(q, ω)

(3)

χ s(q, ω) = −g2μ2
B

χ0(q, ω)

1 − V eff
a (q)χ0(q, ω)

. (4)

χ0(q, ω) is the zero-temperature irreducible polarizability function, gμB is the magnetic
moment of an electron in which g is the Lande factor, and μB is the Bohr magnetron. The
real and imaginary parts of χ0(q, ω) are defined and evaluated for a QW in [23]. V eff

s (q) and
V eff

a (q) are the symmetric and antisymmetric spin effective potentials, respectively, defined as
follows:

V eff
s (q) = V 0(q)[1 − G(q)] (5)

V eff
a (q) = V 0 (q) Gs(q), (6)

where V 0(q) is the Fourier transform of the bare Coulomb potential for a QW. Most of the
previously conducted studies have taken the bare Coulomb potential described by the harmonic
confinement potential [10–13],

V 0(q) = (e2/ε0)e
x k0(x), (7)

with x = (qb/2)2, where b is the lateral width of the QW, determined by the confining
oscillator frequency, and k0(x) is a modified Bessel’s function of the second kind. However,
this potential does not give a true description of the bare Coulomb potential for a QW of smaller
width (a < 5 nm). Therefore, as has been discussed earlier, for practical considerations we
undertake a more suitable form of V 0(q) that gives a better description of the bare Coulomb
potential for a QW and remains valid at all values of q and a. The V 0(q) that we adopt is
defined by [23]

V 0(q) = 2e2

ε0

∫ ∞

0
dt

H (u)√
t2 + q2

, (8)

with

H (u) =
(

u

w
+ 2

u

)
− 32π4

(wu)2
(1 − e−u), (9)

where u = a
√

t2 + q2 and w = u2 + 4π2. The LFC for density fluctuation, G(q), and for spin
fluctuation, Gs(q), for a QW can be given in the HA by [23, 13]
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G(q) = 1

2

V 0
(√

q2 + k2
F

)

V 0(q)
(10)

Gs(q) = −1

2

V 0
(√

q2 + k2
F

)

V 0(q)
. (11)

The HA does away with the heavy computational work required in other self-consistent
calculation schemes, such as SSTL and STLS, and it makes the calculation of the ground-state
properties relatively simple. Further, firstly, as the single-particle excitations are nonexistent
in 1D, courtesy of the TL model, and the collective excitations that emerge in this model are
bosons, so it looks academically more plausible and consistent to invoke the SPA in studying
the many-body properties of a 1D interacting electron gas. The utilization of SPA puts the
formalism on the same footing as that of the TL framework. The SSTL and STLS (albeit more
accurate than Hubbard) are still based on the Fermi liquid picture, and this aspect calls for an
explanation, as the standard theoretical model has been the TL model. Secondly, the calculation
of many-body properties in the SPA helps to obtain a few analytical results, as have been duly
reported before [23]. Under the SPA, equation (2) reduces to

Ŝ(q) = 1

nπ

∫ ∞

0
dω

χ02

(1 − ω2
s

ω2 )2 + (V eff
a χ02)2

. (12)

ωs is the frequency of intra-subband collective spin density excitations, termed paramagnons,
defined by the poles of the spin correlation response function, i.e. 1/χ s(q, ω) = 0. The
dispersion of the collective modes is given by the simple analytical result [25]. The expression
for ωs can be generalized for any other method like SSTL and STLS by incorporating the LFC.
In the HA, ωs is given by

ωs

εF
≡ y0 =

[
As(q)ω2+(q) − ω2−(q)

As(q) − 1

]1/2

, (13)

where As(q) = eqπ/mV eff
a (q), and ω± = |Eq ± qvF| defines the limits of the single-particle

excitations. εF = h̄2k2
F/2m∗ is the free-electron Fermi energy and Eq = h̄2q2/2m∗.

Equation (13) can also be cast as

y2
0 =

(
8z3

As(q) − 1

)
+ (z2 + 2z)2, (14)

where we define z = q/kF. A central role is played by the electron pair correlation function.
Accurate knowledge of this function is crucial for applications of density functional theory in
various schemes that have been proposed to transcend the local density approximation in the
construction of exchange and correlation energy functionals [26]. The Fourier transform of the
static structure factor and static magnetic structure factor give the nonmagnetic and magnetic
pair correlation functions, respectively, which take the form below:

g(r) = 1 + 1
2

∫ ∞

0
dq cos(qr)[S(q) − 1] (15)

ĝ(r) = 1
2

∫ ∞

0
dq cos(qr)[Ŝ(q) − 1]. (16)

The parallel spin pair correlation function, g ↑↑ (r), and the anti-parallel spin pair correlation
function, g ↑↓ (r), may be written in terms of equations (15) and (16), respectively, as;

g ↑↑ (r) = g(r) + ĝ(r) (17)

g ↑↓ (r) = g(r) − ĝ(r). (18)
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Figure 1. Local-field correction, Gs(z), plotted as a function of z. The figure depicts curve A for
rs = 1 and a = 5 nm, and curve B for rs = 4 and a = 5 nm.

(This figure is in colour only in the electronic version)

3. Results and discussion

Figure 1 displays the Gs(z) within HA for two different values of rs = 1/(2naB), where
aB = εh̄2/e2m∗ is the Bohr radius and e is the electronic charge. A small ratio of the Coulomb
energy, Ec and εF, i.e. Ec/εF � 1, is suggestive of high electron densities and weak electron–
electron interactions, and conventional Fermi liquid behaviour is applicable. On the other hand,
Ec/εF 	 1 means that very low electron densities and strong electron–electron interactions
are rampant, which results in a highly correlated electron liquid, where the formation of a
Wigner crystal is expected. The LFC incorporate the effects of correlation and thereby plays
an important role in determining physical quantities that involve many-body interactions. They
also influence the fulfilment of sum-rules. The incorporation of LFC in the scheme extends
the range of q-values over which sum-rules can be satisfied and that the range is determined
by the value of Gs(z). We had checked the compliance of other sum-rules too and found that
the formalism adopted by us conforms to them for q → 0 [23, 27]. From the plot of Gs(z),
from equation (11) in figure 1 for two values of kF (= 0.8074 × 106 and 0.201 85 × 106) cm−1

(which correspond to rs = 1 and 4, respectively) and the width of the QW spans 5 nm, we find
that the correlation between the electrons increases with decreasing density, that is, increasing
rs. The paramagnon dispersion, ωs, versus z = q/kF at rs = 2 is shown in figure 2. The
curve exhibits the same linear behaviour as has been found in computations using the SSTL
and STLS approaches for small values of z [13].

The Ŝ(z) evaluated in the HA that has been used in our calculation is very similar to that
obtained from the SSTL [12] and STLS [13] schemes of computation. All three evaluations
are similar to the Hatree–Fock result for a free-electron gas at small values of rs. However, no
analytical result is possible for Ŝ(z) in the STLS and SSTL schemes of incorporating the LFC.
The advantage of our approach of calculating Ŝ(z) using HA over the SSTL and SSTL method
is that an analytical result can be obtained for the magnetic structure factor by the use of the
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Figure 2. Paramagnon dispersion, ωS(z)/εF(z) is plotted as a function of z for rs = 2.

SPA. Our calculated analytical results on Ŝ(z) using the SPA are given by,

Ŝ(z) = 2z2

t2
+ by2

0(2 + t)

4r t3
log

(
(ty2

2 + y2
0 − y2r)(ty2

1 + y2
0 + y1r

(ty2
1 + y2

0 − y1r)(ty2
2 + y2

0 + y2r)

)

+ by2
0(2 − t)

2
√

�t3

{
tan−1

(
2ty2 + r√

�

)
+ tan−1

(
2ty2 − r√

�

)

− tan−1

(
2ty1 − r√

�

)
− tan−1

(
2ty1 + r√

�

)}
, (19)

where

b = m∗V eff
a

zkFh̄2
, y2 = z(z + 2), y1 = z(z − 2), t =

√
1 + b2,

r = √
2y0(1 + t), � =

√
4y2

0 t − r 2.

As for the case of S(z) calculated within the HA using the PPA, the Ŝ(z) worked out under HA
with the use of the SPA describes very well the behaviour of numerically computed results on
Ŝ(z) from equation (2) within the HA, for lower values of z.

Figures 3(a) and (b) depict the magnetic structure factor for varying densities (rs =
0.5, 1, 2) and wire widths (a = 20, 9, 5 nm), respectively, evaluated using equations (2)
and (19). The plotted Ŝ(z) versus z curves ((A) and (D)) in figure 3(a) for rs = 0.5 develop
a peak at z = 2. This trend is also seen in both the self-consistent calculations of SSTL
and STLS, for values of rs up to rs = 1.5, beyond which it becomes exceedingly difficult to
obtain self-consistent solutions for a magnetic structure factor, although it is possible in the
case of a nonmagnetic structure factor. The peaks observed have been argued to be suggestive
of paramagnetic instability [11, 12]. A recent self-consistent field calculation on the exchange
coupling in mesoscopic rings using the LST formalism also shows a peak in the magnetic
structure factor [28]. The magnetic structure factor evaluated in the HA formalism does not
impose an upper limit on the values of rs to obtain a solution, however it can be observed from
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Figure 3. (a) Analytical magnetic structure factor within the SPA (curves D, E and F) along with
the numerically computed Ŝ(z) from equation (2) (curves A, B and C) are plotted for QW constant
width; a = 9 nm and varying densities rs . Curves A and D are plotted for rs = 0.5, curves B and E
are plotted for rs = 1, and curves C and F are plotted for rs = 2. (b) Analytical magnetic structure
factor in the SPA (curves D, E and F) along with the numerically computed Ŝ(z) from equation (2)
(curves A, B and C) are plotted for constant density rs = 1 and varying QW width a. Curves A and
D are plotted for a = 20 nm, curves B and E are for plotted for a = 9 nm, and curves C and F are
plotted for a = 5 nm.

curves B and E, C and F in figure 3(a) that the peak smooths out for increasing values of rs. The
peak not only depends on density but it is very much influenced by the width of the QW. The
same can be figured out from figure 3(b), where it can be noticed that the broad peak observed
for a = 20 nm in the case of numerical Ŝ(z) (curve A) and a relatively sharp peak in the SPA
(curve D) tends to flatten for decreasing values of the parameter a. At relatively high density,
rs = 0.8, and thick wire diameter (a/aB = 3.1), it has been shown that the dispersion of the
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RPA plasmon and the dispersion calculation within the TL model are essentially identical for
small momentum transfers z � 0.2 [29]. Therefore, the analytical result for Ŝ(z) obtained in
the SPA is of significance, as it exactly reproduces the result of the more exhaustive HA Ŝ(z)
for small z values, even for much smaller wire widths and larger rs than in the above-quoted
paper. It is well established that the SPA complies with the f -sum rule and the static Kramers–
Kronig relation [15, 17]. In fact, the HA Ŝ(z) within the SPA agrees with the HA Ŝ(z) beyond
the SPA for greater values of z. The SPA magnetic analytical structure factor that incorporates
LFC within the HA also exhibits a peak at q = 2kF, as obtained from the more exhaustive
numerical structure factor shown in figure 3(a). However, the behaviour of the analytical Ŝ(z)
is a little different from the analytical S(z), which is akin to the case of numerical Ŝ(z) and
S(z). The Ŝ(z) shows a small peak at some value of z, depending on the value of rs, and
then increases with increasing values of z, unlike the S(z), which continuously increases for all
values of z. The monotonously increasing analytical Ŝ(z) for increasing z values seems to be
unphysical, but the exactness of the result for lower z values is sufficient to speak of its utility
to a point. The STLS calculation is also reported to exhibit a peak, but the peak vanishes for
densities rs > 1.8. The STLS approach employs the bare Coulomb potential and the SSTL
computation is performed using a screened Coulomb potential. In our approach too, the peak
begins to diminish for decreasing values of electron densities and ultimately is not seen for
higher values of rs.

The graphs of spin symmetric pair correlation function, g ↑↑ (r), and spin anti-symmetric
pair correlation function, g ↓↑ (r), calculated within the Hubbard approximation along with
the g ↑↑ (r) and g ↓↑ (r) obtained in the SPA is displayed in figures 4(a) and (b), respectively,
for two values of rs (1 and 0.323) or kF (0.8074 × 106 and 2.5 × 106) cm−1. The values of
g ↓↑ (r) depicted in figure 4(b), for the correlation between anti-parallel spins, is governed
only by the Coulombic repulsion of the electrons, whereas statistics play a role in the correlation
of parallel spin electrons—g ↑↑ (r). As reported earlier, the g ↑↑ (r) remains independent of
rs for higher values of rs(rs > 0.323). Also, the fact that values of g ↑↑ (r) at zero separation
increase with increasing rs, as has been reported in [12, 13], is also clearly demonstrated in our
calculation within the HA for both the cases of the SPA and without the SPA. It is found that
the curve of g ↑↑ (r) under the SPA approaches that of g ↑↑ (r) computed without the SPA,
for higher values of rs (rs > 1). Our computed g ↑↑ (r) yields negative values for lower values
of separation, when rs < 0.323 or (kF > 2.5 × 106 cm−1) at a = 7 nm. The calculation using
STLS is not free from this shortcoming either. The electron–electron interaction is stronger
at lower densities and the system transcends the scope of the Fermi liquid model. The model
that describes the behaviour of such a low-density, highly correlated, 1D electron liquid is the
TL model, as was also pointed out in the introduction. The fabrication of a 1D semiconducting
QW of such low densities is within the reach of state-of-the-art technology. Hence experimental
investigations in this regard will determine how far calculations based on the SPA represent the
experimental results.

4. Conclusions

We calculated the paramagnon frequency, the magnetic structure factor, and the parallel and
anti-parallel spin pair correlation functions using the improved RPA that incorporates the
LFC within the HA. The numerical results obtained in the SPA are in very close quantitative
agreement with that of the full HA for low-electron-density quantum wires (density � 106).
An analytical result obtained for the magnetic structure factor also reproduces a similar result
for small momentum transfers which depend on the values of electron density considered. The
formalism complies with the conservation laws and sum-rules. Numerical results displayed are
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Figure 4. (a) Symmetric spin pair correlation function, g ↑↑ (r), is plotted as a function of kFr .
Figure depicts curves for g ↑↑ (r) using the SPA Ŝ(z) (curves A and C) and solving Ŝ(z) from
equation (2) (curves B and D) for two values of rs = 1 and 0.323, respectively, at a = 7 nm.
(b) Anti-symmetric pair correlation function, g ↑↓ (r), as a function of kFr . Figure depicts curves
(A, C and D) for g ↑↓ (r) with the use of the SPA Ŝ(z) and curves (B, D and E) with use of
Ŝ(z) from equation (2). The curves A, B, C, D, E and F are plotted for the following parameters,
respectively: curves A and B, rs = 1 at a = 7 nm; curves C and D, rs = 0.323 at a = 7 nm; curves
E and F, rs = 1 at a = 5 nm.

those for a GaAs-QW. The results have been found to be in good qualitative agreement with the
previously reported self-consistent field calculations of SSTL and STLS. It is envisaged that
an experimental investigation in this direction will truly be rewarding and also will ratify the
validity of the approach.
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